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Abstract

EEG connectivity measures could provide a new type of featpace for inferring
a subject’s intention in Brain-Computer Interfaces (BCHpwever, very little is
known on EEG connectivity patterns for BCIs. In this studGconnectivity
during motor imagery (MI) of the left and right is investigdtin a broad frequency
range across the whole scalp by combining Beamforming wigim3fer Entropy
and taking into account possible volume conduction effe@bserved connec-
tivity patterns indicate that modulation intentionallydirced by MI is strongest
in the v-band, i.e., above 35 Hz. Furthermore, modulation betweknrd rest
is found to be more pronounced than between MI of differemidsa This is in
contrast to results on Ml obtained with bandpower featuaed, might provide an
explanation for the so far only moderate success of convigcteatures in BCls.
It is concluded that future studies on connectivity basedsBshould focus on
high frequency bands and consider experimental paradigatsriaximally vary
cognitive demands between conditions.

1 Introduction

Brain-Computer Interfaces (BCIs) are devices that enatsdabgect to communicate without uti-
lizing the peripheral nervous system, i.e., without anyrowgovement requiring volitional motor
control. The primary goal of research on BCls is to enabléclmsmmunication for subjects unable
to communicate by normal means due to neuro-degenerateasks such as amyotrophic lateral
sclerosis (ALS). In non-invasive BCls, this is usually aygwhed by measuring the electric field of
the brain by EEG, and detecting changes intentionally inaduzy the subject (cf. [1] for a general
introduction to BCIs). The most commonly used experimeptabdigm in this context is motor
imagery (MI) [2]. In MI subjects are asked to haptically inta®movements of certain limbs, e.g.,
the left or the right hand. Ml is known to be accompanied by@ekese in bandpower (usually most
prominent in theu-band, i.e., roughly at 8-13 Hz) in that part of the motor erntepresenting the
specific limb [3]. These bandpower changes, termed eveategk(de-)synchronization (ERD/ERS),
can be detected and subsequently used for inferring the&isbintention. This approach to BCls
has been demonstrated to be very effective in healthy sishjeith only little subject training time
required to achieve classification accuracies close to 1i00&6o-class paradigms [4—6]. Further-
more, satisfactory classification results have been regatith subjects in early to middle stages
of ALS [7]. However, all subjects diagnosed with ALS and dalpaof operating a BCI still had
residual motor control that enabled them to communicatbowit the use of a BCI. Until now, no
communication has been established with a completely thaksubject, i.e., a subject without any
residual motor control. Establishing communication witbaapletely locked-in subject arguably
constitutes the most important challenge in research ors BCl



Unfortunately, reasons for the failure of establishing omication with completely locked-in sub-
jects remain unknown. While cognitive deficits in completielgked-in patients can at present not
be ruled out as the cause of this failure, another possilgaeation is abnormal brain activity ob-
served in patients in late stages of ALS [8]. Our own obs@aatindicate that intentionally induced
bandpower changes in the electric field of the brain mightdoliced in subjects in late stages of
ALS. To explore the plausibility of this explanation for tfelure of current BCIs in completely
locked-in subjects, it is necessary to devise feature etiraalgorithms that do not rely on mea-
sures of bandpower. In this context, one promising appragtt employ connectivity measures
between different brain regions. It is well known from fMRiddies that brain activity during Ml is
not confined to primary motor areas, but rather includestaildised network including pre-motor,
parietal and frontal regions of the brain [9]. Furthermamchronization between different brain
regions is known to be an essential feature of cognitivegesing in general [10]. Subsequently, it
can be expected that different cognitive tasks, such as Miffgrent limbs, are associated with dif-
ferent connectivity patterns between brain regions. Theseectivity patterns should be detectable
from EEG recordings, and thus offer a new type of featureeparcinferring a subject’s intention.
Since measures of connectivity are, at least in principldependent of bandpower changes, this
might offer a new approach to establishing communicatiah wompletely locked-in subjects.

In recent years, several measures of connectivity havedmatoped for analyzing EEG recordings
(cf. [11] for a good introduction and a comparison of sevatgbrithms). However, very few studies

exist that analyze connectivity patterns as revealed by Biihg Ml [12, 13]. Furthermore, these

studies focus on differences in connectivity patterns betwMI and motor execution, which is not

of primary interest for research on BClIs. In the context af+vasive BCls, connectivity measures
have been most notably explored in [14] and [15]. Howeverséhstudies only consider frequency
bands and small subsets of electrodes known to be relevapdfapower features, and do not take
into account possible volume conduction effects. This mighd to misinterpreting bandpower

changes as changes in connectivity. Consequently, a heitlerstanding of connectivity patterns
during Ml of different limbs as measured by EEG is requiredjtide the design of new feature

extraction algorithms for BCls. Specifically, it is impantato properly address possible volume
conduction effects, not confine the analysis to a small sulifselectrodes, and consider a broad
range of frequency bands.

In this work, these issues are addressed by combining ctvitie@analysis during Ml of the left
and right hand in four healthy subjects with Beamforminghods [6]. Since it is well known that
Ml includes primary motor cortex [3], this area is chosenhas gtarting point of the connectivity
analysis. Spatial filters are designed that selectivelgekthose components of the EEG originating
in the left and right motor cortex. Then, the concept of Tfan&ntropy [16] is used to estimate
class-conditional 'information flow’ from all 128 employedcording sites into the left and right
motor cortex in frequency bands ranging from 5 - 55 Hz. In th&y, spatial topographies are
obtained for each frequency band that depict by how much aghof the brain is influencing the
left/right motor cortex during Ml of the left/right hand. terestingly, the most pronounced changes
in connectivity patterns are not observed in Ml of the leftthe right hand, but rather in rest vs. Ml
of either hand. Furthermore, these pattern changes areprmsbunced in frequency bands not
usually associated with MI. i.e., in theband above 35 Hz. These results suggest that in order
to fully exploit the capabilities of connectivity measurfes BCls, and establish communication
with completely locked-in subjects, it might be advisaldeonsidery-band oscillations and adapt
experimental paradigms as to maximally vary cognitive deasebetween conditions.

2 Methods

2.1 Symmetric vs. Asymmetric Connectivity Analysis

In analyzing interrelations between time-series data iinigortant to distinguish symmetric from
asymmetric measures. Consider Fig. 1, depicting two graplisree random processes to ss,
representing three EEG sources. The goal of symmetric ctimite analysis (Fig. 1.a) is to esti-
mate some instantaneous measure of similarity betweemmapdocesses, i.e., assigning weights
to the undirected edges between the nodes of the graph il BigAmplitude coupling and phase
synchronization fall into this category, which are the meas employed in [14] and [15] for feature
extraction in BCls. However, interrelations between EEGrses originating in different regions of
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Figure 1: lllustration of symmetric- vs. asymmetric contgty analysis for three EEG sources
within the brain.

the brain can be expected to be asymmetric, with certaim begiions exerting stronger influence on
other regions than vice versa. For this reason, asymmetnicectivity measures potentially provide
more information on cognitive processes than symmetricsones.

Considering asymmetric relations between random prosessgiires a definition of how the influ-
ence of one process on another process is to be measured, qeantitative definition of causal
influence. The commonly adopted definition of causality metiseries analysis is that causes
s; if observings; helps in predicting future observations 4f, i.e., reduces the prediction error of
s;. This implies that cause precedes effect, i.e., that thehgiraFig. 1.b may only contain directed
arrows pointing forward in time. Note that there is some ayaiby in this definition of causality,
since it does not specify a metric for reduction of the priégiicerror ofs; due to observing;. In
Granger causality (cf. [11]), reduction of the varianceh® prediction error is chosen as a metric,
essentially limiting Granger causality to linear systethshould be noted, however, that any other
metric is equally valid. Finally, note that for reasons afiglicity the graph in Fig. 1.b only contains
directed edges from nodes at tim#® nodes at timé + 1. In general, directed arrows from nodes at
timest, ..., t—ktonodes at time+ 1 may be considered, withthe order of the random processes
generatings|[t + 1].

To assess Granger causality between bivariate time-siatasa linear autoregressive model is fit to
the data, which is then used to compute a 2x2 transfer matthei frequency domain (cf. [11]). The
off-diagonal elements of the transfer matrix then providaeasure of the asymmetric interaction
between the observed time-series. Extensions of Grangeality to multivariate time-series data,
termed directed transfer function (DTF) and partial dieeatoherence (PDC), have been developed
(cf. [11] and the references therein). However, in this warklated but different measure for asym-
metric interrelations between time-series is utilizede Toncept of Transfer Entropy (TE) [16] de-
fines the causal influence efon s; as the reduction in entropy ef obtained by observing;. More

precisely, lets; ands; denote two random processes, andstet[t] == (si/;[t],- ... si/;[t — k]).
TE is then defined as
Ty (si[t] — st + 1)) :==H (sj [t + 1]|sf[t]) - H (sj [t + 1]|s§[t], sf[t]) , Q)

with & the order of the random processes &h@d) the Shannon entropy. TE can thus be understood
as the reduction in uncertainty about the random progesstimet + 1 due to observing the past

k samples of the random process Both, Granger causality and TE, thus define causal influence
as a reduction in the uncertainty of a process due to obgeariother process, but employ different
metrics to measure reduction in uncertainty. While TE is asueathat applies to any type of
random processes, it is difficult to compute in practice. ¢¢eim this study only Gaussian processes
are considered, i.e., itis assumed thg{ + 1], s¥[t], s'[t]) is jointly Gaussian distributed. TE can
then be computed as
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with R,y the (cross-)covariance matrices of the respective randoeepses [17]. In comparison

to Granger causality and related measures, TE for Gausgiaagses possesses several advantages.
It is easy to compute from a numerical perspective, sinceésscot require fitting a multivariate
autoregressive model including (implicit) inversion ofga matrices. Furthermore, for continuous
processes it is invariant under coordinate transformatj@i]. Importantly, this entails invariance
with regard to scaling of the random processes.

Computing TE for Gaussian processes requires estimatiothef(cross-)covariance matrices
in (2). Consider a matrixs € R2*T*N_ corresponding to data recorded from two EEG



sources during an experimental paradigm wihtrials of 7' samples each. In order to compute
TGP (s1]t] = soft +1]) fort = k+1,...,T — k — 1, it is assumed that in each trig{ [t] and
so[t] are i.i.d. samples from the distributigiis, [t], s2[t]), i.€., that the non-stationary Gaussian pro-
cesses that give rise to the observation mattiare identical for each of thé/ repetitions of the
experimental paradigm. For each instant in time, TE can ltlesgvaluated by computing the sample
(cross-)covariance matrices required in (2) across triddge that evaluating (2) requires specifica-
tion of k. In generalk should be chosen as large as possible in order to maximiaanation on
the random processes contained in the (cross-)covariaatricas. However, choosingtoo large
leads to rank deficient matrices with a determinant of zerrelfor each observation matitkthe
highest possiblé is chosen such that none of the matrices in (2) is rank deficien

2.2 TheProblem of Volume Conduction in EEG Connectivity Analysis

The goal of connectivity analysis in EEG recordings is tdneate connectivity patterns between
different regions of the brain. Unfortunately, EEG recagd do not offer direct access to EEG
sources. Instead, each EEG electrode measures a lineansiadtaneous superposition of EEG
sources within the brain [18]. This poses a problem for syimmeonnectivity measures, since
these assess instantaneous coupling between electr@®]esAdymmetric connectivity measures
such as TE, on the other hand, are not based on instantarmqlimg, but rather consider prediction
errors. Itis not obvious that instantaneous volume conduaetlso poses a problem for this type of
measures. Unfortunately, the following example demotesrthat volume conduction also leads to
incorrect connectivity estimates in asymmetric connégtianalysis based on TE.

Example 1 (Volume Conduction Effectsin Connectivity Analysis based on Transfer Entropy)
Consider the EEG signals, [t] and z[t], recorded at two electrodes placed on the scalp, that
consist of a linear superposition of three EEG souregg)] to s3[t] situated somewhere within the
brain (Fig. 2.a). Letz[t] = (z1[t], z2[t])T and s[t] = (si[t], sa2[t], s3[t])T. Thenz[t] = As[t],
with A € R2*3 describing the projection strength of each source to eaeltedde. For sake of
simplicity, assume that = (1 01; 01 1), i.e., that the first source only projects to the first
electrode with unit strength, the second source only ptsjéo the second electrode with unit
strength, and the third source projects to both electrodil unit strength. Furthermore, assume
that
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i.e., that all sources have zero mean, unit variance, areuallyt independent, and; and s, are
uncorrelated in time. Onlys[t] and s3[t + 1] are assumed to be correlated with covariange
(Fig. 2.b). In this setting, it would be desirable to obtagra TE between both electrodes, since
there is no interaction between the sources giving rise 6®0BEG. However, some rather tedious
algebraic manipulations reveal that in this case

1 3 1 4—~2
GP( . - _
Note that (4) is zero if and only #f = 0, i.e., if s3 represents white noise. Otherwise, TE between
the two electrodes is estimated to be greater than zeroysdled to volume conduction effects from
sourcess. Further note that qualitatively this result holds indepently of the strength of the
projection of the third source to both electrodes.

2.3 Attenuation of Volume Conduction Effects via Beamfor ming

One way to avoid volume conduction effects in EEG conndgtignalysis is to perform source
localization on the obtained EEG data, and apply connégtiveasures on estimated current density
time-series at certain locations within the brain [11]. STisifeasible to test certain hypothesis, e.g.,
to evaluate whether there exists a causal link between teciféppoints within the brain. However,
testing pairwise causal links between more than just a féntgwithin the brain is computationally
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Figure 2: lllustration of volume conduction effects in EE@haectivity analysis.

intractable. Accordingly, attenuation of volume condantieffects via source localization is not
feasible if a complete connectivity pattern consideringwhole brain is desired. Here, a different
approach is pursued. It is well known that primary motor &oiis central to Ml as measured by
EEG [3]. Accordingly, it is assumed that any brain regioroimed in MI displays some connectivity
to the primary motor cortex. This (admittedly rather strpagsumption enables a complete analysis
of the connectivity patterns during Ml covering the wholaibrin the following way. First, two
spatial filters, commonly known as Beamformers, are desliginat selectively extract EEG sources
originating within the right and left motor cortex, respeely [6]. In brief, this can be accomplished
by solving the optimization problem

w' Rz, w

* i 5

w" = argmax § ——=—"—— o, (5)
wERM w' Ryw

with R, € RM>M the covariance of the recorded EEG, aRgl, € R *M model-based spatial
covariance matrices of EEG sources originating within tbfdfrlght motor cortex. In this way,
spatial filters can be obtained that optimally attenuate#inence of all EEG sources not originating
within the left/right motor cortex. The desired spatialdit are obtained as the eigenvectors with
the largest eigenvalue of the generalized eigenvalue @mobl;,, w = AR,w (cf. [6] for a more
detailed presentation).

With EEG sources originating within the left and right motmrtex extracted, TE from all EEG
electrodes into the left and right motor cortex can be comgbutin this way, volume conduction
effects from all sources within the brain into the left/ighotor cortex can be optimally attenuated.
However, volume conduction effects from the left/right orotortex to any of the EEG electrodes
still poses a problem. Accordingly, it has to be verified if goositive TE from an EEG electrode
into the left/right motor cortex could be caused by bandpastenges within the left/right motor
cortex. Positive TE from any electrode into the left/righttor cortex can only be considered as a
genuine causal link if it is not accompanied by a bandpowangk in the respective motor cortex.

3 Experimental Results

To investigate connectivity patterns during Ml the follagiexperimental paradigm was employed.
Subjects sat in a dimly lit and shielded room, approximately meters in front of a silver screen.
Each trial started with a centrally displayed fixation croser three seconds, the fixation cross was
overlaid with a centrally placed arrow pointing to the leftright. This instructed subjects to begin
Ml of the left or right hand, respectively. Subjects werel@itby instructed to perform haptic Ml,
but the exact choice of the type of imaginary hand movemestlafa unspecified. After a further
seven seconds the arrow was removed, indicating the ene ofith and start of the next trial. 150
trials per class were carried out by each subjects in rarmiahorder. During the experiment, EEG
was recorded at 128 electrodes placed according to thededetD-20 system with electrode Cz as
reference. EEG data was re-referenced to common averagemeé offline. Four healthy subjects
participated in the experiment, all of which were male amgghtrihanded with an age @7 + 2.5
years. For each subject, electrode locations were recavithdan ultrasound tracking system. No
artifact correction was employed and no trials were regecte

For each subject, model-based covariance matfiges for EEG sources within the left/right motor
cortex were computed as described in [6]. The EEG covariarateix R, was computed for each
subject using all available data, and the two desired Beandts, extracting EEG sources from the
left and right motor cortex, were computed by solving (5).eTHEG sources extracted from the
left/right motor cortex as well as the unfiltered data reedrdt each electrode were then bandpass-



filtered with sixth-order Butterworth filters in five frequenbands ranging from 5 to 55 Hz in steps
of 10 Hz. Then, TE was computed from all EEG electrodes intdlefft/right motor cortex at each
sample point as described in Section 2.1. Furthermore afcin subject class-conditional bandpower
changes (ERD/ERS) of sources extracted from the left/mgbtior cortex were computed in order
to identify frequency bands with common modulations in lgovder and TE. Two subjects showed
significant modulations of bandpower in all five frequencpds These were excluded from further
analysis, since any observed positive TEs could have be#owaded by volume conduction. The
resulting topographies of mean TE between conditions oftwteremaining subjects are shown
in Fig. 3. Here, the first two columns show mean TE from all ettes into the left/right motor
cortex during Ml of either hand (3.5-10s) minus mean TE dythaseline (0.5-3s) in each of the
five frequency bands. The last two columns show mean difte®in TE into the left/right motor
cortex between Ml of the left and right hand (both conditiatso baseline corrected). Note that
the topographies in Fig. 3 have been normalized to the marimiifference across conditions to
emphasize differences between conditions. Interestinglylistinct differences in TE are observed
between MI of the left and right hand. Instead, strongedewifices in TE are observed in rest
vs. MI of either hand (left two columns). The amount of desee&n TE during Ml relative to
rest increases with higher frequencies, and is most praremlim they-band from 45-55 Hz (last
row, left two columns). Topographically, strongest diffeces are observed in frontal, pre-central,
and post-central areas. Observed changes in TE are sttissignificant with significance level
«a = 0.01 at all electrodes in Fig. 3 marked with red crosses (stesissignificance was tested non-
parametrically and individually for each subject, Beamfer, and condition by one thousand times
randomly permuting the EEG data of each recorded trial il timd testing the null-hypothesis that
changes in TE at least as large as those in Fig.3 are obseitrezlitvany temporal structure being
present in the data). Due to computational resources onigadl subset of electrodes was tested
for significance. The observed changes in TE display oppositdulations in comparison to mean
bandpower changes observed in left/right motor cortexiveléo baseline (Fig. 4, only significant
(o = 0.01) bandpower changes relative to baseline (0-3s) plotteéye Hstrongest modulation of
bandpower is found in the- (~ 10 Hz) andg-band ¢ 25 Hz). Frequencies above 35 Hz show very
little modulation, indicating that the observed differeaén TE at high frequencies in Fig. 3 are not
due to volume conduction but genuine causal links.

4 Discussion

In this study, Beamforming and TE were employed to investighe topographies of 'informa-
tion flow’ into the left and right motor cortex during Ml as meeaied by EEG. To the best of the
author’s knowledge, this is the first study investigatingrasietric connectivity patterns between
brain regions during Ml of different limbs considering a ddofrequency range, a large number of
recordings sites, and properly taking into account volummdaction effects. However, it should
be pointed out that there are several issues that warrahefunvestigation. First, the presented
results are obtained from only two subjects, since two stibjead to be excluded due to possible
volume conduction effects. Future studies with more subjare required to validate the obtained
results. Also, no outflow from primary motor cortex and no Tdvieen brain regions not including
primary motor cortex have been considered. Finally, thehoddlogy presented in this study can
not be applied in a straight-forward manner to single-tata, and is thus only of limited use for
actual feature extraction in BCls.

Never the less, the obtained results indicate that bandpdvesmges in motor cortex and connectiv-
ity between motor cortex and other regions of the brain anegeses that occupy distinct spectral
bands and are modulated by different cognitive tasks. Ijuocmtion with the observation of no
distinct changes in connectivity patterns between MI ofedént limbs, this indicates that in [14]
and [15] bandpower changes might have been misinterpreteahmectivity changes. This is further
supported by the fact that these studies focused on fregumrals displaying significant modula-
tion of bandpower (8-30 Hz) and did not control for volume doction effects. In conclusion, the
pronounced modulation of connectivity between Ml of eithend vs. rest in the-band observed in
this study underlines the importance of also considerigh fiequency bands in EEG connectivity
analysis. Furthermore, since theband is thought to be crucial for dynamic functional cornivéy
between brain regions [10], future studies on connectpditerns in BCls should consider exper-
imental paradigms that maximally vary cognitive demandsrier to activate different networks
within the brain across conditions.
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